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Abstract- The characteristic interactions of discrete 
modes supported by planar isotropic and anisotropic di- 
electric and ferrite slab waveguides are analyzed using 
singularity and critical point theory, leading to a rigorous 
and complete explanation of all modal interactions. For 
an anisotropic planar waveguide having an arbitrarily- 
orientated optical axis, it is shown that mode coupling 
is controlled by the presence of an isolated Morse crit- 
ical point accompanied by a pair of complex-conjugate 
frequency-plane branch points. The interaction of space- 
wave leaky modes on a grounded anisotropic slab is stud- 
ied by investigating the evolution of complex frequency- 
.plane branch point singularities as the orientation of the 
optical axis varies. Space-wave leaky modes of a biased 
grounded ferrite slab waveguide are studied in connec- 
tion with different types of branch-point singularities, re-‘, 
sulting in the observation of novel wave effects on ferrite 
slabs. The general theory is presented, and numerical 
results are provided for some specific waveguides. 

I. INTRODUCTION 

Dielectric waveguides are often fabricated using 
isotropic dielectrics, although anisotropic dielectrics 
may be incorporated either intentionally or unintention- 
ally. Naturally occurring anisotropic materials may be 
intentionally chosen as a waveguide material for a va- 
riety of reasons, such as to enhance polarization-based 
effects (11. In addition, waveguide materials may exhibit 
processing-induced anisotropy, such as often occurs in 
forming planar layers for circuit boards [a]. Anisotropy 
can have a significant effect on modal coupling and 
cutoff properties, and must often be accounted for in 
electromagnetic simulations for design and analysis of 
guided-wave structures and devices. In particular, the 
presence of anisotropy can induce mode coupling in a 
waveguiding structure that would not admit such cou- 
pling when constructed using isotropic materials [3], [4]. 
Biased ferrites with anisotropic permeability are used 
in various nonreciprocal devices such as phase shifters, 
polarizers, and isolators, where electromagnetic proper- 
ties of such devices are controlled by varying the applied’ 
magnetic bias field (5]-[7]. 

Unfortunately, the dispersion characteristics of 
all but the simplest waveguiding structures (e.g., 

Fig. 1. A complex-media planar slab waveguide. 

homogeneously-filled parallel conducting plates or 
closed rectangular waveguides) must be determined nu- 
merically, which obscures the analytical character of the 
dispersion function. In recent papers we have presented 
a method based on singularities and critical points 
which helps to reveal the analytical character of the dis- 
persion function and explain observable modal phenom- 
ena. In [8] singular points and associated frequency- 
plane branch points were shown to govern modal be- 
havior in the vicinity of cutoff in a variety of trans- 
mission line and waveguiding structures. In [9] Morse 
critical points were shown to provide an alternative to 
traditional coupled-mode theory for general transmis- 
sion lines and waveguides. In (lo] the TM-even modes 
supported by an isotropic planar waveguide were stud- 
ied, and complex frequency-plane branch points asso- 
ciated with these modes were identified. This lead to 
an explanation of the “apparent” modal nonuniqueness 
of TM-even surface-wave modes supported by a pla- 
nar waveguide having material loss or gain. In [ll] it 
was shown that branch points are also associated with 
Morse critical points which occur in mode coupling re- 
gions, such that mode interactions will have the form of 
either mode transformations or mode continuations, de- 
pending on the path of frequency variation with respect 
to the location of the frequency-plane branch points. 
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In this work we apply the theory of singular and crit- 
ical points to explain modal phenomena on anisotropic 
planar dielectric waveguides, making use of the isotropic 
waveguide results, and investigate discrete forward, 
backward, and associated space-wave leaky modes on 
biased ferrite slabs in connection with singularity the- 
ory. 

II. SINGULARITIES AND CRITICAL POINTS OF THE 
DISPERSION FUNCTION 

Considering the two-dimensional complex-media pla- 
nar waveguiding structure depicted in Figure 1, which is 
invariant along the waveguiding p-axis (p = ,/m), 
and subsequent to a two-dimensional Fourier trans- 
form in space and time, (p, t) - (X,w), source-free 
Maxwell’s equations can be converted to an operator 
equation for the discrete modes of the structure, 

~(b4E,&d)x=o. (1) 

In general, a planar slab waveguide shown in Fig- 
ure 1 represents a planar bianisotropic medium, but 
in this paper we are considering two separate cases 
of anisotropic slab with the permittivity tensor E and 
,U z ~0 and ferrite slab with the permeability tensor 
F and g = EOE,.. In (1) A is an operator-function, X 
z the spatial Fourier-transform variable representing 
the modal propagation constant (note that A is a ra- 
dial transform variable, and not wavelength), w is the 
temporal Fourier-transform variable representing angu- 
lar frequency, and X represents a modal field distribu- 
tion, typically current density, electric field, or magnetic 
field, depending on the problem formulation. We con- 
sider the analytic continuation of each of the variables 
(X,w) into the complex plane, and assume that f,  I, 
and d have specified values. The dyadic permittivity E 
is given by 

cosBcosf$ cos8sin4 -sin6 
R(e74) = 

1 

-sin4 cos q5 0 (3) 
sin 6 cos 4 sin 6 sin 4 cos e 1 

represents a rotation matrix which fixes the position of 
the optical axis, and RT is the transpose of R. 

The dyadic permeability 14 is given by 

P JK cl 
g = POR C&G+) 

[ I 

-2% P 0 RT (4 4) I (4) 
0 0 1 

where p = 1+ (wew~)/(w~ - w2), K. = WWM/(W~ - w2), 
we = ypeHe, WM = yp,-,M,, and HO is the dc magnetic 

bias field, MS is the material saturation magnetization, 
and y  = -1.759 x 101’ kg/coul. 

Non-trivial solutions of (1) are obtained from the im- 
plicit dispersion equation 

H (kw,c,~,d) = det (A (hw,c,~,d)) = 0. (5) 

More generally, H is a mapping (A, w,E,& d) ---) C 
such that 

H(&w,E>@) =C (f-9 

where C E C is a complex-valued constant in the com- 
plex space C, i.e., given E, E, and d only for certain 
values of (A, w) is C = 0. By treating (A, w) as a pair of 
complex variables, a study of the properties of the map- 
ping H leads to the analysis of critical points and asso- 
ciated complex frequency-plane branch points which ex- 
plain modal phenomena. We assume that the mapping 
H is continuous, and that all second partial derivatives 
of H exist and are continuous. For a given operator- 
function this is usually easy to prove. 

Since E, p, and d have specified values, the pair of 
variables (A, w) belongs to one of three possible cate- 
gories. If  

v=H;(X,w)=O, w=H;(+)=O 

(7) 
we call (A, w) = (A,, w,) a critical point of the mapping 
H. If  

w=Hi(X,w)#O, %j$=H;(X,w)#o 

(8) 
then (X,w) = (A,., w,) is said to be a regular point of 
the mapping H. If  

9 = Hi (X,w) # 0, v  = H; (X,w) = 0 
(9) 

or 

w = Hi (X,w) = 0, w = H; (X,w) # 0 

(10) 
then (A,w) = (As,ws) is said to be a singular point of 
the mapping H. 

Furthermore, if 

H (b.u,Q) = 0 (11) 

then (X,w) = (A 0, we) is a solution of (5) leading to 
modal dispersion behavior. In this case we are usually 
interested in determining the implicit dispersion func- 
tion X0 (we, E, k, d) for the modal propagation constant 
as a function of frequency. In fact, for any we one can 
find a solution X0. 

Each modal solution point (X0, we) of (5) will be ei- 
ther a critical point, a regular point, or a singular point 
of the mapping H, although, conversely, critical, regu- 
lar, and singular points of H are not necessarily modal 
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Fig. 2. Dispersion curves for the TM1 and TEe modes when 
the optical axis is positioned at 0 = O”. The location of a 
degenerate MCP is shown by the plus sign at the place of 
intersection of dispersion curves. 

solutions (i.e., they do not necessarily satisfy H = 0). 
From a geometric view, one can consider properties of 
the surface (X, w,E,~, d, H (A, w, E,E, d)) in the vicinity 
of the hyperplane (X, w, 2, CL, d, 0). 

III. SINGULARITIES ASSOCIATED WITH ANISOTROPIC 

AND FERRITE WAVEGUIDE MODES 

A full-wave solution for a bianisotropic slab waveg- 
uide depicted in Figure 1 (anisotropic or ferrite planar 
slabs considered in this paper) was obtained numerically 
using the method described in [12]. Dispersion behav- 
ior of the TM1 and TEo modes of anisotropic slab with 
0 = 0” and E,, = syy = 4~0, czr = 2.25~0, 2d = 2 cm is 
shown in Figure 2. In this case (0 = 0’) in the place of 
the intersection of dispersion curves appears a critical 
point called a degenerate Morse critical point (MCP), in 
the sense that H (X,, w,) = 0, and the dispersion curves 
form (locally) two intersecting straight lines, indicating 
that the modes do not couple. 

As the optical axis is moved away from a coordinate 
axis the modes generally become hybrid (although pure 
TE and TM modes do still exist if the optical axis is 
moved in certain planes). Dispersion curves of the hy- 
brid EHr and HEo modes when the optical axis is po- 
sitioned at 19 = 45” and I$ = 30” is shown in Figure 
3. In this case the MCP becomes nondegenerate and in 
addition two complex-conjugate frequency plane branch 
points reside symmetrically about the real-w axis. Since 
the path of frequency variation passes between these 
points, mode coupling and associated mode transfor- 
mation occurs [ 111. 

The migration of the MCP and branch points, as well 
as the splitting off of the branch points ws,r (m1’2) from the 
MCP as the pure TE and TM modes become hybrid, 
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Fig. 3. Dispersion curves for the hybrid EH1 and HEo modes 
when the optical axis is positioned at 19 = 45O and 4 = 30°. 
The location of the nondegenerate MCP is shown by the plus 
sign in the region of mode transformation. 
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Fig. 4. Migration (parameterised) in the complex frequency plane 
of various branch points and the MCP associated with the 
modes shown in Figure 3. 

is shown in Figure 4. The solid lines show migration 
of the branch points for sZr = 2.25~0 as E,, = syy 
changes from 2.25~ (isotropic case) to E,, = eyy = 4~0 
(anisotropic case). The dashed lines show the migration 
as 0 is then changed from 0” to 60” in the plane I$ = 30”. 
As the material becomes anisotropic the MCP moves 
from infinity to the finite w-plane (in Figure 4, w,/2~ = 
6.6921 GHz for sz2 = syy = 4~0 and sZz = 2.25&o), and 
as 9 moves away from 0, w, migrates as shown (at 
6 = 45”, w,/2~ = 8.904 GHz and at 9 = 60”, w,/2~ = 
10.179 GHz) and branch points wAF~‘~) associated with 

the nondegenerate MCP emerge (these branch points 
coalesce at the MCP if 0 is brought back to 0). 

Numerical results for magnetostatic, TE and TM sur- 
face waves, and associated space-wave leaky modes of a 
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Fig. 5. Dispersion behavior of magnetostatic, TE and TM sur- Fig. 6. Dispersion behavior of magnetostatic, TE and TM sur- 
face wave modes, and associated space-wave leaky modes of a face wave modes, and associated space-wave leaky modes of a 
grounded ferrite slab waveguide having d = 0.5 cm, eT = 15, grounded ferrite slab waveguide having d = 0.5 cm, er = 15, 
Ho = 10 G, poMs = 100 G. Ho = 100 G, poMs = 1000 G. 
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