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Abstract— The characteristic interactions of discrete
modes supported by planar isotropic and anisotropic di-
electric and ferrite slab waveguides are analyzed using
singularity and critical point theory, leading to a rigorous
and complete explanation of all modal interactions. For
an anisotropic planar waveguide having an arbitrarily-
orientated optical axis, it is shown that mode coupling
is controlled by the presence of an isolated Morse crit-

ical point accompanied by a pair of complex-conjugate -

frequency-plane branch points. The interaction of space-
wave leaky modes on a grounded anisotropic slab is stud-
ied by investigating the evolution of complex frequency-
plane branch point singularities as the orientation of the
optical axis varies. Space-wave leaky modes of a biased
grounded ferrite slab waveguide are studied in connec-
tion with different types of branch-point singularities, re-'
sulting in the observation of novel wave effects on ferrite
slabs. The general theory is presented, and numerical
results are provided for some specific waveguides.

I. INTRODUCTION

Dielectric waveguides are often fabricated using
isotropic dielectrics, although anisotropic dielectrics
may be incorporated either intentionally or unintention-
ally. Naturally occurring anisotropic materials may be
intentionally chosen as a waveguide material for a va-
riety of reasons, such as to enhance polarization-based
effects [1]. In addition, waveguide materials may exhibit
processing-induced anisotropy, such as often occurs in
forming planar layers for circuit boards [2]. Anisotropy
can have a significant effect on modal coupling and
cutoff properties, and must often be accounted for in
electromagnetic simulations for design and analysis of
guided-wave structures and devices. In particular, the
presence of anisotropy can induce mode coupling in a
waveguiding structure that would not admit such cou-
pling when constructed using isotropic materials [3], [4].
Biased ferrites with anisotropic permeability are used
in various nonreciprocal devices such as phase shifters,
polarizers, and isolators, where electromagnetic proper-
ties of such devices are controlled by varying the applied'
magnetic bias field [5]-[7].

Unfortunately, the dispersion characteristics of
all but the simplest waveguiding structures (e.g.,

Fig. 1. A complex-media planar slab waveguide.

homogeneously-filled parallel conducting plates or
closed rectangular waveguides) must be determined nu-
merically, which obscures the analytical character of the
dispersion function. In recent papers we have presented
a method based on singularities and critical points
which helps to reveal the analytical character of the dis-
persion function and explain observable modal phenom-

‘ena. In [8] singular points and associated frequency-

plane branch points were shown to govern modal be-
havior in the vicinity of cutoff in a variety of trans-
mission line and waveguiding structures. In [9] Morse
critical points were shown to provide an alternative to
traditional coupled-mode theory for general transmis-
sion lines and waveguides. In [10] the TM-even modes
supported by an isotropic planar waveguide were stud-
ied, and complex frequency-plane branch points asso-
ciated with these modes were identified. This lead to
an explanation of the “apparent” modal nonuniqueness
of TM-even surface-wave modes supported by a pla-
nar waveguide having material loss or gain. In [11] it
was shown that branch points are also associated with
Morse critical points which occur in mode coupling re-
gions, such that mode interactions will have the form of
either mode transformations or mode continuations, de-
pending on the path of frequency variation with respect
to the location of the frequency-plane branch points.
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In this work we apply the theory of singular and crit-
ical points to explain modal phenomena on anisotropic
planar dielectric waveguides, making use of the isotropic
waveguide results, and investigate discrete forward,
backward, and associated space-wave leaky modes on
biased ferrite slabs in connection with singularity the-
ory.

II. SINGULARITIES AND CRITICAL POINTS OF THE
DiISPERSION FUNCTION

Considering the two-dimensional complex-media pla-
nar waveguiding structure depicted in Figure 1, which is
invariant along the waveguiding p-axis (p = /22 + 42),
and subsequent to a two-dimensional Fourier trans-
form in space and time, (p,t) —— (), w), source-free
Maxwell’s equations can be converted to an operator
equation for the discrete modes of the structure,

A(Aw,g p,d) X =0 1)

In general, a planar slab waveguide shown in Fig-
ure 1 represents a planar bianisotropic medium, but
in this paper we are considering two separate cases
of anisotropic slab with the permittivity tensor £ and
@ = po and ferrite slab with the permeability tensor
p and € = eger. In (1) A is an operator-function, A
is the spatial Fourier-transform variable representing
the modal propagation constant (note that A is a ra-
dial transform variable, and not wavelength), w is the
temporal Fourier-transform variable representing angu-
lar frequency, and X represents a modal field distribu-
tion, typically current density, electric field, or magnetic
field, depending on the problem formulation. We con-
sider the analytic continuation of each of the variables
(A, w) into the complex plane, and assume that g, I
and d have specified values. The dyadic permittivity ¢
is given by

€zz O 0
e=RT(6,¢)| 0 ¢, 0 [R(B9), (2
0 0 e,
where
cosfcos¢ cosfsing —sinf
R(8,¢) = —sing cos ¢ 0 (3)
sinfcos¢ sinfsing cosé

represents a rotation matrix which fixes the position of
the optical axis, and RT is the transpose of R.
The dyadic permeability u is given by

uoogk 0
u= HoR (9, ¢) -k p 0 RT (97 d)) ’ (4)
0 0 1

where p = 1 + {wown)/ (W3 — w?), Kk = wwpr /(W8 ~ w?),
wp = YpoHo, war = yoMs, and Hy is the dc magnetic

bias field, M, is the material saturation magnetization,
and v = ~1.759 x 10! kg/coul.

Non-trivial solutions of (1) are obtained from the im-
plicit dispersion equation

H(M\w,g,p,d) =det (A (\w,g,p,d)) =0.  (5)

More generally, H is a mapping ()\,w,g, 18 d) — C

such that
H(\w,g pd) =C (6)

where C € C is a complex-valued constant in the com-
plex space C, i.e., given g, u, and d only for certain
values of (\,w) is C = 0. By treating ()\,w) as a pair of
complex variables, a study of the properties of the map-
ping H leads to the analysis of critical points and asso-
ciated complex frequency-plane branch points which ex-
plain modal phenomena. We assume that the mapping
H is continuous, and that all second partial derivatives
of H exist and are continuous. For a given operator-
function this is usually easy to prove.

Since g, p, and d have specified values, the pair of
variables (), w) belongs to one of three possible cate-
gories. If

OH) — Yy (A w) =0, 2HQ) _ i ()\w)=0
(7)

we call (A, w) = (A¢,we) a critical point of the mapping

BHas\‘,w = H;\ (’\1‘-‘)) 7é 0, BHBi:,u) = Htﬁ) ()"w) 7é 0( )
8
then (A, w) = (Ar,w,) is said to be a regular point of
the mapping H. If

9%@=mum¢ué%@=m0m=%
9

or

ﬂHai,w) = H, (A w)=0, BHB:\),w = H, (\w) 7;18)
then (\,w) = (s, ws) is said to be a singular point of
the mapping H.

Furthermore, if

H (A w,g,p,d) =0 (1)
then (A, w) = (Mo,wo) is a solution of (5) leading to
modal dispersion behavior. In this case we are usually
interested in determining the implicit dispersion func-
tion Ag (wo, &K d) for the modal propagation constant
as a function of frequency. In fact, for any wg one can
find a solution Ag.

FEach modal solution point (Ag,wg) of (5) will be ei-
ther a critical point, a regular point, or a singular point
of the mapping H, although, conversely, critical, regu-
lar, and singular points of H are not necessarily modal
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Fig. 2. Dispersion curves for the TM; and TEg modes when
the optical axis is positioned at § = 0°. The location of a
degenerate MCP is shown by the plus sign at the place of
intersection of dispersion curves.

solutions (i.e., they do not necessarily satisfy H = 0).
From a geometric view, one can consider properties of
the surface ()\,w,g, ud, H (A,w,g,/_;, d)) in the vicinity
of the hyperplane (A, w, ¢, g, d,0).

III. SINGULARITIES ASSOCIATED WITH ANISOTROPIC
AND FERRITE WAVEGUIDE MODES

A full-wave solution for a bianisotropic slab waveg-
uide depicted in Figure 1 (anisotropic or ferrite planar
slabs considered in this paper) was obtained numerically
using the method described in [12]. Dispersion behav-
ior of the TM; and TEq modes of anisotropic slab with
0 = 0° and €, = €yy = 4eg, €, = 2.2560, 2d =2 cm is
shown in Figure 2. In this case (§ = 0°) in the place of
the intersection of dispersion curves appears a critical
point called a degenerate Morse critical point (MCP), in
the sense that H (A, w.) = 0, and the dispersion curves
form (locally) two intersecting straight lines, indicating
that the modes do not couple.

As the optical axis is moved away from a coordinate
axis the modes generally become hybrid (although pure
TE and TM modes do still exist if the optical axis is
moved in certain planes). Dispersion curves of the hy-
brid EH; and HE; modes when the optical axis is po-
sitioned at § = 45° and ¢ = 30° is shown in Figure
3. In this case the MCP becomes nondegenerate and in
addition two complex-conjugate frequency plane branch
points reside symmetrically about the real-w axis. Since
the path of frequency variation passes between these
points, mode coupling and associated mode transfor-
mation occurs [11].

The migration of the MCP and branch points, as well

as the splitting off of the branch points w((f/"ll‘m from the
MCP as the pure TE and TM modes become hybrid,
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Fig: 3. Dispersion curves for the hybrid EH; and HEg modes
when the optical axis is positioned at § = 45° and ¢ = 30°.
The location of the nondegenerate MCP is shown by the plus
sign in the region of mode transformation.
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Fig. 4. Migration (parameterized) in the complex frequency plane
of various branch points and the MCP associated with the
modes shown in Figure 3.

is shown in Figure 4. The solid lines show migration
of the branch points for ¢,, = 2.25¢¢ as €z = €yy
changes from 2.25¢q (isotropic case) t0 €55 = &4y = 40
(anisotropic case). The dashed lines show the migration
as @ is then changed from 0° to 60° in the plane ¢ = 30°.
As the material becomes anisotropic the MCP moves
from infinity to the finite w-plane (in Figure 4, wp, /27 =
6.6921 GHz for £z, = £yy = 4€9 and €, = 2.25¢¢), and
as 6 moves away from 0, w, migrates as shown (at
0 = 45°, wy, /27 = 8.904 GHz and at § = 60°, w,, /27 =
10.179 GHz) and branch points w(();"ll’z) associated with
the nondegenerate MCP emerge (these branch points
coalesce at the MCP if ¢ is brought back to 0).
Numerical results for magnetostatic, TE and TM sur-
face waves, and associated space-wave leaky modes of a
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Fig. 5. Dispersion behavior of magnetostatic, TE and TM sur-
face wave modes, and associated space-wave leaky modes of a
grounded ferrite slab waveguide having d = 0.5 cm, & = 15,
Hy =10 G, poMs =100 G.

grounded ferrite slab waveguide with applied bias mag-
netic field (Figure 1) are shown in Figures 5 and 6.
Starting with the isotropic slab waveguide and iden-
tifying various critical and branch point singularities
(in particular fold points associated with a leaky wave
cutoff), a bias magnetic field was applied resulting in'
nonreciprocal properties of the slab. With varying bias
magnetic field, it occurs that the leaky wave cutoff (for
example, of the mode TE3) splits into two fold points
(wy frequency-plane branch points) corresponding to
forward and backward surface waves. It was also ob-
served that in a biased grounded ferrite slab the first
TE forward mode can possibly leak the energy into free
space (Figures 5 and 6) in contrast to isotropic slab

waveguides.

IV. CONCLUSION

In this paper we have presented a general theory
which explains modal phenomena in terms of singulari-
ties and critical points in the complex frequency plane.
As the isotropic material in the waveguide was trans-
formed into an anisotropic and ferrite medium, it was
shown that the singularities and critical points associ-
ated with the isotropic waveguide migrate in the com-
plex frequency plane. This migration was used to ex-
plain modal coupling, modal transformation, and modal
interaction phenomena of discrete hybrid surface waves
and space-wave leaky modes for the cases of anisotropic
and ferrite slab waveguides.
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